An operator representation for weighted inductive limits of spaces of vector valued holomorphic functions
نویسندگان
چکیده
منابع مشابه
The Subspace Problem for Weighted Inductive Limits of Spaces of Holomorphic Functions
The aim of the present article is to solve in the negative a well-known open problem raised by Bierstedt, Meise and Summers in [BMS1] (see also [BM1]). We construct a countable inductive limit of weighted Banach spaces of holomorphic functions, which is not a topological subspace of the corresponding weighted inductive limit of spaces of continuous functions. As a consequence the topology of th...
متن کاملHolomorphic vector-valued functions
exists. The function f is continuously differentiable when it is differentiable and f ′ is continuous. A k-times continuously differentiable function is C, and a continuous function is C. A V -valued function f is weakly C when for every λ ∈ V ∗ the scalar-valued function λ◦ f is C. This sense of weak differentiability of a function f does not refer to distributional derivatives, but to differe...
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملA special subspace of weighted spaces of holomorphic functions on the upper half plane
In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...
متن کاملMultilinear commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces
In this paper, we will obtain the strong type and weak type estimates for vector-valued analogs of intrinsic square functions in the generalized weighted Morrey spacesM w (l2). We study the boundedness of intrinsic square functions including the Lusin area integral, the Littlewood-Paley g-function and gλ -function, and their multilinear commutators on vector-valued generalized weighted Morrey s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2001
ISSN: 1370-1444
DOI: 10.36045/bbms/1102714789